博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
爬取了陈奕迅新歌《我们》10万条评论数据发现:原来,有些人只适合遇见
阅读量:7125 次
发布时间:2019-06-28

本文共 3702 字,大约阅读时间需要 12 分钟。

hot3.png

最近就有一部“怀旧”题材的电影,未播先火,那就是刘若英的处女作——《后来的我们》。青春,爱情,梦想,一直是“怀旧”题材的核心要素,虽然电影现在还未上映,但先行发布的主题曲《我们》,已经虐哭了不少人。在MV里,歌声清清浅浅,诉说着那些年关于爱情里的遗憾。

“我最大的遗憾,就是你的遗憾,与我有关”,下面就一起来感受一下吧。

这首歌是《后来的我们》中的主题曲,网易云音乐上线当天便席卷千万+播放量,现如今光是网易云上面的评论就马上突破了10万条。

网易云音乐一直是我向往的“神坛“,听音乐看到走心的评论的那一刻,高山流水。于是今天练习Python来抓取一下歌曲的热门评论。并做成图表、词云来展示,看看相对于这首歌最让人有感受的评论内容是什么。

一、抓数据

要想做成词云图表,首先得有数据才行。于是需要一点点的爬虫技巧。

基本思路为:抓包分析、加密信息处理、抓取热门评论信息

1.抓包分析

我们首先用浏览器打开网易云音乐的网页版,进入陈奕迅《我们》歌曲页面,可以看到下面有评论。接着F12进入开发者控制台(审查元素)。

接下来就要做的是,找到歌曲评论对应的url,并分析验证其数据跟网页现实的数据是否吻合,步骤如下图:

输入图片说明

通过歌曲id轻松找到评论所在的链接

输入图片说明

查看hreaders的信息,发现浏览器使用的是POST的方式进行的请求

输入图片说明

具体字段如上图,会发现表单中需要填两个数据,名称为params和encSecKey。后面紧跟的是一大串字符,换几首歌会发现,每首歌的params和encSecKey都是不一样的,因此,这两个数据可能经过一个特定的算法进行加密过的

输入图片说明

服务器返回的和评论相关的数据为json格式的,里面含有非常丰富的信息(比如有关评论者的信息,评论日期,点赞数,评论内容等等),其中hotComments就是我们要找的热门评论,总共15条

那我们的思路就很清晰了,只需要分析这个api并模拟发送请求,获取json进行解析就好了。

2.加密信息处理

然后经过我的测试,直接把浏览器上这俩数据拿过来就可以。但是要想真正的解决这个加密处理,还需要有点加解密的只是存储。关于这两个参数如何解密,强大的知乎上其实已经有答案的了,感兴趣的朋友可以进去看一下

如何爬网易云音乐的评论数?(

我们在这里就只需要用我们这种偷懒的办法就可以完成需求了。这里我就使用这么个临时的方法好了,而且对于不同的歌曲是可以重用的,待会我们可以验证一下。

3.抓取热门评论信息

代码块如下:

import requestsimport jsonurl = 'http://music.163.com/weapi/v1/resource/comments/R_SO_4_551816010?csrf_token=568cec564ccadb5f1b29311ece2288f1'headers = {    'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 Safari/537.36',    'Referer':'http://music.163.com/song?id=551816010',    'Origin':'http://music.163.com',    'Host':'music.163.com'}#加密数据,直接拿过来用user_data = {    'params': 'vRlMDmFsdQgApSPW3Fuh93jGTi/ZN2hZ2MhdqMB503TZaIWYWujKWM4hAJnKoPdV7vMXi5GZX6iOa1aljfQwxnKsNT+5/uJKuxosmdhdBQxvX/uwXSOVdT+0RFcnSPtv',    'encSecKey': '46fddcef9ca665289ff5a8888aa2d3b0490e94ccffe48332eca2d2a775ee932624afea7e95f321d8565fd9101a8fbc5a9cadbe07daa61a27d18e4eb214ff83ad301255722b154f3c1dd1364570c60e3f003e15515de7c6ede0ca6ca255e8e39788c2f72877f64bc68d29fac51d33103c181cad6b0a297fe13cd55aa67333e3e5'}response = requests.post(url,headers=headers,data=user_data)data = json.loads(response.text)hotcomments = []for hotcommment in data['hotComments']:    item = {        'nickname':hotcommment['user']['nickname'],        'content':hotcommment['content'],        'likedCount':hotcommment['likedCount']         }    hotcomments.append(item)#获取评论用户名,内容,以及对应的获赞数   content_list = [content['content'] for content in hotcomments]nickname = [content['nickname'] for content in hotcomments]liked_count = [content['likedCount'] for content in hotcomments]

二、数据可视化

在获得相关评论数据后,我们将其做成图表与词云图,将让人看起来更直观。

输入图片说明

接下来需要在自己电脑上安装需要相关的安装包: pyecharts(图表包)、matplotlib(绘图功能包)、 WordCloud(词云包)

其中,pyecharts 是一个用于生成 Echarts 图表的类库。 Echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化,同时pyecharts 兼容 Python2 和 Python3。安装非常简单,只需:

pip install pyecharts

接下来就是代码的实现,利用之前获得评论用户名和对应的点赞数,将其制作成图表图:

from pyecharts import Barbar = Bar("热评中点赞数示例图")bar.add( "点赞数",nickname, liked_count, is_stack=True,mark_line=["min", "max"],mark_point=["average"])bar.render()

输入图片说明

由此可以看出,获得最高赞数(95056)评论是:

@鱼大叔Uncle:后来的我,离开了他,永远的离开了他,十年的感情不过寥寥几句话。后来的我,嫁给了一个很普通的人,没有他的浪漫,却有不一样的温暖。

大多数赞数为20000-30000之间,最低都达到7000+,(基本与网页里评论中数据吻合)。

最后,我们将所有的热门评论内容,制作成词云图展示出来,代码块如下:

from wordcloud import WordCloudimport matplotlib.pyplot as pltcontent_text = " ".join(content_list)wordcloud = WordCloud(font_path=r"C:\simhei.ttf",max_words=200).generate(content_text)plt.figure()plt.imshow(wordcloud,interpolation='bilinear')plt.axis('off')plt.show()

结果图:

输入图片说明

从图中可以看出,很多人感慨,后来只有你我,再无我们。

注明:所有数据,是属于当时所爬取的数据。

三、后记

曾记得,郭敬明在书里写,“我们太年轻,以致于都不知道以后的时光,竟然那么长,

长得足够让我忘记你,足够让我重新喜欢一个人,就像当初喜欢你那样。”

我们这一生,总是遇到太多的后来。从不懂爱到懂爱,从拥有到珍惜。

所幸是到了最后,无论过了多少年。后来的我们,都在对方身上,学会了如何去爱。

输入图片说明

就像陈奕迅在歌里唱的,“有过执着,放下执着”。有些人啊,光是遇见就已经值得了。

我们确实没有了后来。

就让后来的我们,慢慢走,别回头。

不谈亏欠,感谢遇见。

只是在下一次遇见爱的时候,我们都要学会更懂得珍惜。

这才是爱的意义,也是我们为什么去爱。

转载于:https://my.oschina.net/u/3577079/blog/1797386

你可能感兴趣的文章
javascript资料
查看>>
python 进入windows指定路径,创建文件
查看>>
git 本地代码到github
查看>>
等价类划分法设计测试用例
查看>>
js 大图轮播
查看>>
二分搜索首次出现被搜索元素的位置
查看>>
oracle密码过期
查看>>
[SDOI2011]染色 BZOJ2243 树链剖分+线段树
查看>>
DNS检测
查看>>
ssl 握手过程【收藏】
查看>>
form表单数据进行json转换
查看>>
Linux下文件及文件夹的ctime atime mtime的含义详解
查看>>
spring springmvc 注解@service 运行时提示找不到这个service的问题
查看>>
Tomcat架构(四)
查看>>
Spark:交叉验证选择参数集
查看>>
Delphi常用取整函数
查看>>
树莓派高级GPIO库,wiringpi2 for python使用笔记(四)实战DHT11解码
查看>>
0307yuju
查看>>
Axis2发布webservice(4)—利用XML文件同时发布多个webservice和跨多个WebService管理Session...
查看>>
Html中空格转义字符
查看>>